

Available online at www.sciencedirect.com

Tetrahedron Letters

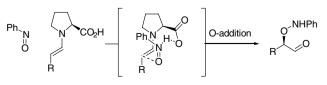
Tetrahedron Letters 47 (2006) 9067-9071

Organocatalyzed asymmetric α -hydroxyamination of α -branched aldehydes: asymmetric synthesis of optically active N-protected α, α -disubstituted amino aldehydes and amino alcohols

Sung-Gon Kim* and Tae-Ho Park

Medicinal Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea

> Received 15 September 2006; revised 7 October 2006; accepted 17 October 2006 Available online 7 November 2006

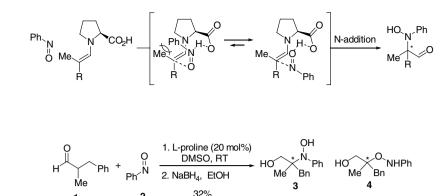

Abstract—Enantioselective direct α -hydroxyamination and α -aminoxylation of α -branched aldehydes using a proline-derived tetrazole catalyst is described herein. α -Hydroxyamination adducts with up to 90% ee were obtained by the reaction of nitrosobenzene with unactivated α -branched aldehydes under mild reaction conditions. © 2006 Elsevier Ltd. All rights reserved.

The class of compound with quaternary carbons bearing nitrogen displays a wide variety of attractive properties. In addition to many natural alkaloids such as lepadiformine, daphniphylline and (–)-adaline,¹ they include chiral α, α -dialkylated amino acids, which are not only useful molecular building blocks for the synthesis of peptides with specific properties,² but also have powerful biologically activities.³ Optically active α, α -disubstituted amino aldehydes have also been used in many synthetic applications.⁴ The asymmetric synthesis of quaternary nitrogen-bearing centres is therefore an important synthetic goal.

Organocatalytic asymmetric reactions have been extensively investigated in recent years and have been given numerous impressive results.⁵ Among them, proline-catalyzed reaction has been exploited to reveal useful new avenues for the aldol, Mannich, Machel, α -amination and α -aminoxylation.^{5b,6} In particular, the α -aminoxylation reaction has received attention in many research groups because the corresponding α -hydroxyaldehydes and ketones are important intermediate in organic synthesis.⁷ Very recently, we have also applied this α -aminoxylation reaction to the synthesis of a natural product.⁸ In due course we had interest in α -branched aldehydes,

which could react with nitrosobenzene to give α -aminoxy or α -hydroxyamino products that are precursors to quaternary α -amino acid. Herein we wish to report an enantioselective direct α -hydroxyamination of α branched aldehydes using a proline-derived tetrazole catalyst.^{9,10} This transformation yields N-protected α,α -disubstituted amino aldehyde with up to a 90% ee and good yield.

On the basis of previous reported studies, we were prompted to consider the α -hydroxyamination of α branched aldehydes with nitrosobenzene. In the reaction of non- α -branched aldehyde and nitrosobenzene in the presence of L-proline, exclusively the α -aminoxy product was given as the major product. In the proposed transition state,¹¹ the (*E*)-anti enamine formed between an aldehyde and proline attacks the oxygen of nitrosobenzene, adopting its phenyl group in a pseudo-axial position and anti with respect to the carbonyl group of proline (Scheme 1). However, we suspected that the enamine intermediate formed between an α -methyl aldehyde and proline might attack nitrogen of nitrosobenzene



Keywords: Hydroxyamination; Aminoxylation; Asymmetric catalysis; Organocatalysis.

^{*}Corresponding author. Tel.: +82 42 860 7115; fax: +82 42 861 1291; e-mail: sgkim@krict.re.kr

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.10.081

67% ee

36% ee

Scheme 3.

Scheme 2

giving an α -hydroxyamino product due to the steric repulsion between the α -methyl group of enanmine and the phenyl group of nitrosobenzene (Scheme 2). It was anticipated that this reaction might provide a simple synthetic methodology to access optically active α, α -disubstituted amino aldehydes and alcohols if nucleophilic attack could be directed to the nitrogen of nitrosobenzene as we anticipated.

To test our assumption, we initially examined the reaction to 2-methyl-3-phenylpropionaldehyde 1 (2 equiv) with nitrosobenzene 2 (1 equiv) using a catalytic amount of L-proline (20 mol %) in DMSO at room temperature. The reaction proceeded to furnish the corresponding α -hydroxyamino product as we anticipated, though the yield and the selectivity between *N*-adduct and *O*-adduct were not as desired (Scheme 3).

Encouraged by this result, we investigated other organocatalysts for the α -hydroxyamination reaction to 2methyl-3-phenylpropionaldehyde **1** with nitrosobenzene **2** to improve both reactivity and enantioselectivity (Table 1). *trans*-4-*tert*-Butyldimethylsiloxy-L-proline (**5b**),¹² which is a highly active catalyst in the α -aminoxylation reaction of non- α -branched aldehydes, showed similar results with L-proline in this reaction. However, in the presence of tetrazole catalyst (**5c**)¹³ the reaction proceeded fast to give the corresponding α -hydroxyamino product. The best results were obtained in DMF giving 81% ee of α -hydroxyamino product and a 96% isolated yield after subsequent reduction with NaBH₄, albeit having no regioselectivity. Tetrazole catalyst (**5d**)¹⁴ having *trans*-4-*tert*-butyldimethylsiloxy group might be expected to be superior to tetrazole catalyst (**5c**) in stereoselectivity due to an increased solubility, but did not show any advantage in this reaction.

The scope of this reaction for various α -branched aldehydes using tetrazole catalyst (**5c**) was next investigated (Table 2).¹⁵ For α -methyl aldehydes, the reaction proceeded to generate α -hydroxyamino and α -aminoxy adducts in a high yields (up to 98%) and with high enantioselectivities of up to 90% ee for α -hydroxyamino adduct (entries 1–7). Even 2-methylbutyraldehyde gave the α -hydroxyamino product in 70% ee (entry 8). However, α -ethyl aldehydes reacted with nitrosobenzene to

Table 1. Enantioselective α -N-hydroxyamination and α -aminoxylation of 2-methyl-3-phenylpropionaldehyde with nitrosobenzene

H + H + H + H + H + H + H + H + H + H +												
Entry	Catalyst	Solvent	Temperature (°C)	Time (h)	Yield ^a (%)	3/4 ^b	ee of 3 ^c (%)	ee of 4 ^c (%)				
1	5a	DMSO	25	24	32	1.5/1	67	36				
2	5b	DMSO	25	24	24	1/1	66	22				
3	5c	DMSO	25	4	97	1/1	70	41				
4	5d	DMSO	25	4	74	1/1	73	29				
5	5c	DMF	25	3	96	1/1	81	37				
6	5d	DMF	25	3	93	1/1	83	31				

^a Yield of isolated product.

^b Determined by ¹H NMR analysis.

^c Determined by chiral HPLC analysis (Chiralcel AD-H).

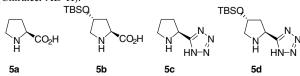


Table 2. Enantioselective α -N-hydroxyamination and α -aminoxylation of α -branched aldehydes with nitrosobenzene and catalyzed by 5c

		H R_1 $+$ N D	bl% 5c MF	OH N_Ph HƠ			
			MF HO I₄, EtOH	↑ [*] ^{IN} Ph HO R ₁ R ₂ 3	R ₁ R ₂ NHP 4	'n	
Entry	Aldehyde	Temperature (°C)	Time (h)	Yield ^a (%)	3/4 ^b	ee of 3 ^c (%)	ee of 4^{c} (%)
1	H Me	25	3	96	1/1	81	37
2	H Me	0 `OMe	8	75	1.7/1	90^{d}	35
3	H Me	0 Br	3	98	1.4/1	86	45
4	H Me	25	24	83	20/1	64 ^d	e
5	H Me	Me 25	24	65	10/1	45	e
6	H Me Bn	0	4	89	0.8/1	79	5
7	H Me	25	3	91	0.7/1	62	27
8	H Me	25	12	76	1.7/1	70	8 ^d
9		25	6	67	1.3/1	25 ^d	11 ^d
10	H Et	25	12	55	0.6/1	5	2

^a Yield of isolated product.

^b Determined by ¹H NMR analysis.

^c Determined by chiral HPLC analysis (Chiralcel AD-H).

^d Determined by chiral HPLC analysis (Chiralcel OD-H).

^e Not determined.

give moderate yields and low enantioselectivities (entries 9 and 10). The stereoselectivity between *N*-adduct and *O*-adduct has been surprisingly increased in the case of α -methyl- α -aryl substituted aldehydes (entries 4 and 5). 2-Phenylpropionaldehyde reacted with nitrosobenzene

in high yield with a stereoselective ratio of 20:1 in favour of the α -hydroxyamino adduct.

In summary, we have described the enantioselective direct α -hydroxyamination of α -branched aldehydes

with nitrosobenzene using a proline-derived tetrazole catalyst in a good yield with a moderate to high enantioselectivity. Although regioselectivity is moderate in α methyl- α -aliphatic substituted aldehydes, this method provides a direct access to optically active α, α -disubstituted amino aldehydes and amino alcohols, which are precursors to quaternary α -amino acids. Further studies into the mechanism and catalytic regio- and enantioselective variants of this reaction are now in progress and will be presented in due course.

Acknowledgements

This work was supported by the Ministry of Science & Technology (KN-0642) and Korea Research Institute of Chemical Technology (KRICT) for the financial support of this work.

References and notes

- For selected reviews, see: (a) Weinreb, S. M. Acc. Chem. Res. 2003, 36, 59–65; (b) Kobayashi, J.; Morita, H. Alkaloids 2003, 60, 165–205; (c) Ramon, D. J.; Yus, M. Curr. Org. Chem. 2004, 8, 149–183; (d) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127–5143.
- (a) Formaggio, F.; Pantano, M.; Crisma, M.; Toniolo, C.; Boesten, W. H. J.; Schoemaker, H. E.; Kamphuis, J.; Becker, E. L. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 953–956; (b) Mossel, E.; Formaggio, F.; Crisma, M.; Toniolo, C.; Brexterman, Q. B.; Boestern, W. H. J.; Kamphuis, J.; Quaedflieg, P. J. L. M.; Temussi, P. *Tetrahedron: Asymmetry* **1997**, *8*, 1305–1314; (c) Bellier, B.; McCort-Tranchepain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Nobel, F.; Garbay, C.; Roques, B. P. J. Med. Chem. **1997**, *40*, 3947–3956.
- (a) Kiick, D. M.; Cook, P. F. *Biochemistry* 1983, 22, 375– 382; (b) Shirlin, D.; Gerhart, F.; Hornsperger, J. M.; Harmon, M.; Wagner, I.; Jung, M. *J. Med. Chem.* 1988, 31, 30–36; (c) Ma, D.; Tian, H.; Zou, G. *J. Org. Chem.* 1999, 64, 120–125.
- 4. (a) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1995, 117, 7379–7388; (b) Wenglowsky, S.; Hegedus, L. S. J. Am. Chem. Soc. 1998, 120, 12468–12473.
- For general reviews on organocatalysis, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726–3748; (b) Special issue: Asymmetric Organocatalysis. Acc. Chem. Res. 2004, 37, 487–631; (c) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175; (d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520–1543.
- 6. For reviews of proline-catalyzed asymmetric synthesis, see: (a) List, B. *Tetrahedron* 2002, 58, 5573–5590;
 (b) Guillena, G.; Ramón, D. J. *Tetrahedron: Asymmetry* 2006, 17, 1465–1492.
- (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247–4250;
 (b) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. M. C. J. Am. Chem. Soc. 2003, 125, 10808–10809;
 (c) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293–8296;
 (d) Bøgevig, A.; Sundén, H.; Códova, A. Angew. Chem., Int. Ed. 2004, 43, 1109–1112;
 (e) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2004, 43, 1112–1115;
 (f) Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5374–5378;
 (g) Wang, W.; Wang, J.; Li, H.; Liao, L. Tetrahedron

Lett. 2004, 45, 7235–7238; (h) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M. J. Org. Chem. 2004, 69, 5966–5973; (i) Códova, A.; Sundén, H.; Bøgevig, A.; Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673– 3684; For a recent review: (j) Merino, P.; Tejero, T. Angew. Chem., Int. Ed. 2004, 43, 2995–2997.

- Kim, S.-G.; Park, T.-H.; Kim, B. J. Tetrahedron Lett. 2006, 47, 6369–6372.
- During the course of this study, Gong and co-workers reported a prolinamide catalyzed α-hydroxyamination reaction of α-methyl aldehydes. A moderated enantioselectivity (up to 64% ee) was given in that case: Guo, H.-M.; Cheng, L.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. *Chem. Commun.* 2006, 429–431.
- (a) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080–1081; (b) Kano, T.; Ueda, M.; Takai, J.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 6046–6047.
- 11. Cheong, P. H.-Y.; Houk, K. N. J. Am. Chem. Soc. 2004, 126, 13912–13913.
- Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Sumiya, T.; Urushima, T.; Shoji, M.; Hashizume, D.; Koshino, H. Adv. Synth. Catal. 2004, 346, 1435–1439.
- (a) Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 5374; (b) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558–560; (c) Hartikka, A.; Arvidsson, A. I. *Tetrahedron: Asymmetry* 2004, 15, 1831–1834; (d) Hartikka, A.; Arvidsson, A. I. *Eur. J. Org. Chem.* 2005, 4287–4295; (e) Franckevičius, V.; Knudsen, K. R.; Ladloe, M.; Longbottom, D. A.; Ley, S. V. Synlett 2006, 889–892.
- 14. Tetrazole catalyst (**5d**) was synthesized starting from *trans*-4-*tert*-butyldimethylsiloxy-L-proline using the same procedure with the synthesis of tetrazole catalyst (**5c**). Mp 262–263 °C; $[\alpha]_D^{27}$ +11.39 (*c* 0.50, CH₃OH); IR (KBr) 3223, 2985, 2793, 2363, 1415; ¹H NMR (200 MHz, CD₃OD) 5.23 (dd, *J* = 6.8, 10.6 Hz, 1H), 4.88 (br s, 1H), 3.66 (dd, *J* = 4.0, 12.2 Hz, 1H), 3.36 (d, *J* = 12.2 Hz, 1H), 2.42–2.66 (m, 2H), 0.96 (s, 9H), 0.19 (s, 6H); ¹³C NMR (50 MHz, CD₃OD) 157.2, 70.7, 53.2, 52.7, 39.3, 24.3, 16.9, -7.0, -6.7; HRMS (M+Na) calcd for C₁₁H₂₃N₅NaO₂Si⁺ 292.1566, found 292.1570.
- 15. In a typical experiment: To a solution of 2-methyl-3phenylpropionaldehyde 1 (296 mg, 2.0 mmol) and (S)-5-(pyrrolidin-2-yl)-1*H*-tetrazole 5c (28 mg, 0.2 mmol) in DMF (2 mL) was added a solution of nitrosobenzene 2 (107 mg, 1.0 mmol) in DMF (1 mL) by a syringe pump over 1 h at room temperature. After additional stirring for 2 h at room temperature, the reaction mixture was diluted with EtOH (5 mL), the solution was cooled to 0 °C and excess NaBH₄ was added. After 20 min, the reaction was treated with saturated aqueous NaHCO₃, extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The crude residue was purified by flash column chromatography (10% EtOAc/hexane) to afford products 3 and 4 (257 mg, 96%). The regioselectivity of the product was determined by ¹H NMR spectra. The enantiomeric excess of products 3 and 4 was measured by HPLC analysis after separation of isomer using column chromatography. 2-(Hydroxy-phenyl-amino)-2-methyl-3-phenyl*propan-1-ol* (3): White powder; mp 123–125 °C; $[\alpha]_D^{28}$ +4.40 (*c* 1.00, CH₃OH); IR (KBr) 3345, 2957, 2935, 1597, 1487, 1452, 1031 ¹H NMR (200 MHz, CDCl₃) 7.21-7.40 (m, 10H), 3.56 (d, J = 6.2 Hz, 2H), 3.27 (d, J = 12.6 Hz, 1H), 2.53 (d, J = 12.6 Hz, 1H), 0.95 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) 149.0, 137.8, 130.8, 127.9, 127.8, 126.2, 125.4, 125.0, 66.3, 65.2, 38.7, 17.7; HRMS (M+Na) calcd for $C_{16}H_{19}NNaO_2^+$ 280.1313, found 280.1309; HPLC (Chiralcel AD-H, 4.0% EtOH/hexanes,

2.3 min, 80% ee; 2- J = 13.2 H J = 13.2 H 13 C NMR

1 mL/min); $t_{\text{minor}} = 29.5 \text{ min}$, $t_{\text{major}} = 32.3 \text{ min}$, 80% ee; 2-Methyl-3-phenyl-2-(N-phenyl-aminooxy)-propan-1-ol (4): Colourless oil; $[\alpha]_{D}^{28} + 8.09$ (c 1.00, CHCl₃); IR (KBr) 3406, 3263, 2945, 1600, 1494, 1454, 1043 ¹H NMR (200 MHz, CDCl₃) 6.98–7.41 (m, 10H), 3.77 (d, J = 11.8 Hz, 1H), 3.65 (d, J = 11.8 Hz, 1H), 3.14 (d, J = 13.2 Hz, 1H), 3.01 (d, J = 13.2 Hz, 1H), 1.24 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) 149.0, 137.3, 130.8, 129.1, 128.3, 126.6, 122.4, 114.9, 83.4, 67.2, 41.5, 19.4; HRMS (M+Na) calcd for C₁₆H₁₉NNaO₂⁺ 280.1313, found 280.1307; HPLC (Chiralcel AD-H, 4.0% EtOH/hexanes, 1 mL/min); $t_{minor} = 45.7$ min, $t_{major} = 48.9$ min, 42% ee.